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Statistics of exponentially decaying radiation of any nuclide always obeys
the binomial stochastic distribution. The variance is derived for the number
of atoms disintegrating in a time interval. The variance determines the error
of the disintegrations number. When the measuring time is short compared
with the half life then the Poisson stochastics is valid. Today computers can
be used to determine either distribution very easily. The dependence of ab-
solute and relative error on the measuring time interval is examined. When
you have a short-lived nuclide, stop the counting in time.
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1 Introduction

Assume that NV is the number of atoms of a certain radioactive nuclide at
time £ = 0. Today N may be observed sometimes even exactly. We start
with the known experimental law:

(AN/N)/dt = -\, (1)

for the relative diminishing of the number N, where \ is the disintegration
constant. A is influenced by the chemical effects: in the EC and IC disin-
tegrations, etc., [1, Ch. 12]. During a time interval 7" the number of the
disintegrated nuclides is

n = N(1—exp(—=AT)). (2)

The stochastics of n, its statistics and the influence of the measuring time 7T,
the author treats thoroughly in [2]. Also here we suppose that all the nuclide
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disintegrations n are detected. We suppose that the count dead time and the
background are zero (except in Ch.3). We have

lim n = N.

T—o0
At this limit 7" — oo, then N —n is smaller than 1 [2, Fig.1]. There n is very
deterministic, i.e., its statistical error is very small.
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Figure 1: Binomian and Poisson statistics. r is the random number of dis-
integrations in time 7. Distributions for the mean value n = Np = 10000.
p = lexp(—A\T)

It has been shown that the probability of radioactive disintegration is al-
ways described by the binomial distribution law [1,2,3,4,5]. The introduction
is presented in [6,7]. Its Poisson approximation demands A\7T' < 1. Fig.1
illustrates the distributions. When p = 0.5 then T' = ¢, 5. The modern com-
puters calculate today the binomial and Poisson distributions easily, even
when N and n are large. In Fig. 1 we have n = pN = 10000, and we present
the binomial distributions

P(r) = <er)p'“(1 N = (T) (1= e ATyr(eAT)N—r

as well as (when N — oo and p — 0 or AT — 0 with pN = n) the Poisson
distribution



Here r is the random variable of the number of disintegrations. For 'C as
well as for 1°K I have calculated equivalent stochastic distributions binomially
(N estimated) and when using Poisson presentation.

In [2] have been postulated: the probability p = 1 — exp(—AT) for a
radioactive nuclide to disintegrate during the time 7. For the mean value of
r we find the estimate

E(r) = N(1 — exp(—AT) = n. (3)

i.e., the value of (2), so that the postulation seems good. The variance of r

is?

Var(r) = 0* = Npq = nexp(—AT). (4)

The paper [2] has the detailed derivations, elucidating all the premises for
this stochastic model.

2 Error considerations
We have, see (4), the standard deviation for n:
e = An = o(r) = Vnexp(—AT/2) = (N(1—exp(—AT)))z exp(—AT/2). (5)

We present the error €(T") = An in Fig. 2 for n = 10000. At T = t/, (T
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Figure 2: Error of n (the number of disintegrations) when N = 10000, and
the curve n(T'), Eq. (2).

has the maximum v/N/2 (50 in Fig. 2), and for any N e¢/N2 = 1/2 when

2In [2] the formula (7) should have
Var(v) = E(v —7)? = pq = (1 — exp(—=AT))exp(—AT).
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T/ti)» = 1. You see that e goes to the value 0 (or the background value)
when 7" — oco. We seek the time 7" when (5) has the value e. Surely one such
a time is short. The other solution of (5) is

T = t15(In((N/2€*)(1 + V1 — 4€?))/ In 2. (6)

When € is small then the time T is that where n = N. In the Table 1 we
have T' when € = An = £1 for some N, and the time when n(t) = N — 1.

Table 1. Measuring times 7" for An = 4+1 and time ¢ of n(t) = N — 1
N | T/t for An = +£1 t/tiyo forn =N —1

100 6.629 6.644

10* 13.2876 13.2877

10° 19,93157 19.93157

An/n = exp(=AT/2)/v/n = N™%(exp(AT) — 1)~/2

is important in practice. An(T') has the maximum, Fig. 2, but the relative
error An/n decreases with T, see Fig. 3, but soon the background is signif-
icant, see section 4. Error of n (the number of disintegrations) when N =
10000, and the curve n(T), Eq. (2).
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Figure 3: An/n when multiplied by v/N.

3 Bayesian approaches

Generally N is unknown. You have a measurement with the result n. What
is the result of many equal measurements? Rainwater and Wu [4] consider
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the Poisson case A\T' < 1 and found E(r) = n+ 1, and Var(r) = n + 1.
Stevenson [5] has derived the solutions for the binomial distribution. He set
N >n and each N has the same probability. His result is

E(r)y=n+1-p. (7)

In the Poisson case p = 0. When p = 1 the result agrees with (3). When
approaching this limit then 7" is much larger than ¢,/,. He found Var(r) =
(1—=p)(n+1). p— (T — oo0) meajns that n approanches the exact value
N.In the book [3] of the group of Russian academician Gol’danskii they have
similar results. Generally we have E(r) € [n,n + 1].

4 Background consideration

When the background includes only the counts of long-lived radioactivity,
then the background always has the Poisson statistics [2]. In Fig.4 is the
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Figure 4: A schema for seeking optimal counting time.

case, where Ry and R, are counting rates, I assume, measured values.There
the background rate Ry, is supposed to be at permanent level. After counting
the time T" you maybe want to continue the counting, but how long? There
is Ry = Ryexp(—AT) = An/(exp(AT) — 1), so long as R, is not significant.
n is the number of counts when counting the time 7. The counting rate
R(t) = Ryexp(—At). When counting a condition for the time ¢ is obtained
by R(t) = 2R,. Longer the t should be surely not
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