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Nuclear disintegration distribution is basically binomial (not Poisson). However, for the 

binomial distribution the number of nuclides must be known. For short live cases it has been 

shown that the distribution becomes sharper when the measuring time increases. The 

accuracy of measurements is considered. 

The influence of the background radiation is discussed. A condition is derived for stopping 

the counting, 
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INTRODUCTION 

   We consider the distribution of radioactive disintegrations. In the radioactive measuring process the 

distribution of the measured counts can be considerably different from the distribution of 

disintegrations. The count distribution and the latter are similar in the case of the perfect (4π) detector. 
The articles [1,2] and this discuss only the distribution of disintegration number. 

We consider the well-known equation 

iTNn ))exp(1( −−=  

for the number n of disintegrations, where N is the number of identical radioactive nuclides, T is the 

measuring time and λ = ln(2)/t½ is the disintegration constant, and the t½ is the half life of the radiation.  

DISTRIBUTION OF RADIOACTIVE DISINTEGRATIONS 

    Set you have N identical nuclides of a radioactive element at the time moment zero. First we 

consider the disintegration of one nuclide. Fig. 1 is a presentation of that. Its stochastic variable is  ν, 

ν ϵ {0,1}. The event of integration (ν = 1) has the probability P(1) = and no 

disintegration event has the probsbility P(0) = q = 1 – p = exp(- λT). The stochastic process of 

disintegration of one nuclide is a special case of binomial distributions. Its own name is Bernoulli 

distribution.  

Let us still look Fig. 1 for the disintegration of one nuclide. In this case the expetation (or the mean 

value) for our stocastic variable ν is   

E(ν) = 0 q + 1 p = p 

and the variance 
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For the disintegration of N nuclides we take the stochastic variable  i

N
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nuclides. r ϵ {0,N} and at the certain value r it has the probability P(r), i.e. 
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Fig. 1. Stochastic variable ν of one nuclide, binomial distribution of one nuclide or 

Bernoulli distribution. 
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For counting the expectetion E(r) we use the mathematical theorem: 

The expectation of the sum of stochastic variables is the sum of the expectations of the variables. 

Then                                            .p)v()()(
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For calculation of the variance of r we use the theorem 

The variance of the sum of independent stochastic variables is the sum of the variances of the 

variables. 

Then (when the nuclides are independent). 
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The standard deviation or error is now 

).2/exp( Tnn −=   (1) 

 

USE OF BINOMIAL DISTRIBUTION 

     For calculation binomial distribution the value of N, the number of nuclides, is needed. Note: it 

must be an integer. As an example we consider potassium. 

Example 1. The radioactive isotope 40K has the half time t½ = 1.26 109 . It emits the photon 1.460 

MeV in 10.72 % emissions. Take a sample of 10 g rock, Make 1 h measurement. Then N = 3.96 



1016. We find n = 2483 emitted photons per 1 h, and  (Eq. 1) Δn = 49.8 and Δn/n = 2.0 %. The 

distribution is in Fig. 2. 

 

Fig. 2. The distribution of Example 1. This result can be calculated with binomial and 

with its approximation (T << t½) Poisson stochastic model. 

In the table 1 the uppermost distribution can be as well calculated by using Poisson model for n = 

10 000. In the lower cases N is calculated by using N = n/p, and when necessary the result is given 

as the closest integer.  

The “curves” in Fig. 2 and in the figures of Table 1 illustrate discrete values of P(r). They obey 
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rP  (in the Poisson model). 

BACKGROUND CONSIDERATION 

     In radiation measurement we can follow the counting rate 
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For short live radiation we can set a condition  

,TRn b=     (2) 

to stop the counting, before the background disturbs. n you find from (1). Rb is the background and 

T is the time when in Fig. 3 the counting rate  



   

 

Table 1. Stochastic distributions P(r) for different T. n = 10 000. 
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is met, Eq. (3) has been solved from (2). R(T) increases with T, though n is increasing. 

  

Fig. 3. Counting rate R for a short-lived decay of radioactivity. Rb is the counting 

rate of background. T is time (Eq. 3) when stop the counting. 

CONCLUSION 

     This paper concerns the emission stochastics of decaying radiation. Each emitting particle (also 

photon) has similar process to be counted. That side of measurement is permanent. However, when 

the counting rate is diminishing, then on the emitter side has a change. I think then the Rainwater-Wu 

[3] idea of binomial model is too simple. 
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