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This paper deecribes firstly a method of numserical anslysis for the moisture measurement with
neutrons, with special consideration of the effects of the dry density and the possible boron content of
the material. Then a series of measurements perfurmed by using an {natrument including an additiona!
fron refiector are rapported and the results analyzed. Finally some theoretical approaches of 2 more
analytical nature are {lustrated by applying simple physical models. Specisl attention is pald to the
{nfluence of & nonuniform distribution of moisture oa the mathematical trestment.

Sections 2 and 3 are contributions of the firat author, aection 4 of the second author.

1. INTRODUCTION

The measurement of moisture with neutrons
is based on the great neutron moderating power
of hydrogen, The effect of the slowing-down upon
the neutron densities in the vicinity of a point
source of fast neutrons is twofold: the density of
slow neutrons increases and the density of fast
neutrons decreases. Therefore, by making ob-
servations on the spatial distributions of either
slow or fast neutrons one can draw conclusions
concerning the moisture in the medium. The
measuring device consists of a point source of
fast neutrons and a detector of slow or {ast neu-
trons. A fast neutron detector is essentially a
slow neutron detector surrounded by a block of
paraffin or other hydrogenous material that
converts the fast neutrons into thermal neutrons
for the detection. So far, the neutron method has
had its widest use In the measurement of the
moisture of soil. Here two alternative arrange-
ments have been employed. In the so-called
depth measurement a probe including the source
and a thermal detector is lowered into a hole in
the soll, whereas in the surface measurement
the {nstrument containing the source and the
detector is placed in the vicinity of the surface
of the medium to be investigated. The numerous
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publications rapporting on these measurements
are collected in the reference lsts of the arti-
cles 1] and [2]. In the moisture measurement of
concrete slabs, walls, etc. the surface method
is most easily applicable (see Pawlin and Spinks
13]), and two different alternatives can here be
used. The surface measurement is called a re-
flection or a transmission experiment depending
on whether the source and the detector are on
the same &ide or on the opposite sides of the
slab, respectively. The transmission method
cannot always be used, but its advantage as com-
pared with the reflection measurement lies gen-
erally in its insensitivity to nonuniformities in
the spatial distribution of moisture. The re-

‘flected fast intensity is usually extremely small

80 that the fast reflection experiment can hardly
be used. The fast transmission measurement, if
it is in practice possible (and {f the glab is not
too thick), is instead very comfortable because
it essentially constitutes a monoenergetic prob-
lem and thus quite elementary description of the
neutron transport is sufficlent to give a good
agreement between theory and experiment. The
measurements of the reflection and the trans-
mission of the slow neutrons produced inside the
hydrogenous slab are theoretically equivalent
and their analysis s complicated because the
whole alowing-down process must be described.
On the other hand, the slow reflection principle
{8 the easlaest one for practical performance.

It is worth mentioning that as well the crya-
tallized water as the loose water take part in the
slowing-down of neutrons in concrete. Conse-
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quently, in comparison of the measurements on
different walls one gets information concerning
the total amount of water.

2. NUMERICAL ANALYSIS AND THE EFFECTS
OF DRY DENSITY AND BORON

2.1. The numevrical method of computalion

The ncutron sources most frequently used for
these purposes are beryllium sources, and most
of them the Ra-Be source despite its high gam-
ma backgroundl. The Am-Be and Ac-Be sources
are more advantageous in this respect, and their
prices are of the same order as those of the
Ra-Be gsource. In our calculations we have used
the spectrum of the Ac-Be source [4] illustrated
in fig. 2 including a peak at the energy of 0.1
MeV which contains 10% of all source neutrons,
but the spectra of the other sources meationed
above are not very different.

The simple age-diffusion model proves to be
unsatisfactory in the quantitative analysis of the
neutron moisture measuring system when the
moisture content cxceeds 15% by volume, as is
shown in the work by Westmeyer [5]. However,
this method may be used, in the same way as the
ray-theory described in scotion 4, Ior the quali-
tative investigation of some important effects,
such as the influence of the composition and the
density of the material. This has been done for
instance by Semmler [2]. We have performed
numerical calculations of the spatial meutron
distributions for a model geometry consisting of
a point source in an infinite medium. This situa-
tion is close to that of the depth measurement,
but the tendencies shown by the results are
probably common to all geometries. The code
prepared for the computations [14] is based on a
combination of the Monte Carlo technique wilh
the method of Selengut and Goertzel. By using
the Monte Carlo method [6] in this context it is
possible to take into account the elastic and the
very important inelastic scattering of neutrons
by the atoms of heavy elements present in the
matorial. The neutron events are followed by
Monte Carle until the neutron energy is below
0.75 MeV. The ncutrons that have passed this
energy value are divided further into two groups
separated by the energy value 0.1 MeV. The
lower group still conluins the neutrons from the
0.1 MeV peak in the Ac-Be spectrum which have
had three scattering events. Below the energy
0.75 McV the diffusion of neutrons is described
by a ninegroup diffusion approximation in the
Selengut -Goertzel modification ([7], pp. 125-135).

The width of the seven highest groups used is
twa lethargy units, the eighth group above 0,1 ¢V
is a little shorter, and the thermal group con-
sists of the neurrons below 0.1 eV. The twe
Monte Carlo proups serve as source lerms fur
the two highest diffusion groups. The results of
our computations are the spatiul distributions of
the epithermal fluax (£ = 1.6 eV) and the thermal
flux. If we omit the errors near the origo intro-
duced by certain osciilations In the calculations
at very low moisture, z good agreement with ex-
perimental results is to be expected.

2.2. The results of the compuintions
The composition of our test material was:

O 43%, MgAl 9%, Si 32%, KCa 5.4% and Fe 3.3GM 237

by weight. In the analysis the clements My and
Al, and, respectively, K and Ca have been lden-
tified on the basis of the similarity of their neu-
tron physical propertics. The test values used
for the density of this medjum are 0.6 g/cm3 and
2.0 g/cm3, and those for the water content of 0%,
5%, 20% and 45% by volume.

As a result of the Monte Carlo calculation we
present the function 41rr2$, where S is the densi-
ty of neutrons with an energy of 0.3 MeV, as a
function of », at different densities and water
contents (flg. 1). The effect of the density upon
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Fig. 1. Neutron distributions st coergy .3 MeV,
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Fig. 2. Comparison of source spectrum at scatierings
when density is 2.0 g/cm3 and moisture 20%.

these results is remarkable. The difference be-
tween the density functions for dry material at
0.6 g/cm3 and 2.0 g/cm3 is a little greater than
the difference between the curves at the water
contents of 0% and 20% when the density is 0.6
g/cmS. The reason for this effect is illustrated
in fig. 2. Here the source spectrum and the rel-
ative probabilities for elastic scattering in hy-
drogen and inelastic scattering in the material
are presented as functions of the energy. At the
average source energy the probabilities for hy-
drogen and inelastic scattering are nearly equal,
but even then the inelast.c scattering i8 domin-
ating in the slowing-down of neutrons. This is
due to the fact that the average energy loss per
inelastic scattering is about 90% of the initial
energy, as compared the corresponding number,
50% for the proton scattering. The hydrogen
scattering dominates only below ca. 1 MeV.
Hence we can conclude that the neutron energies
of the usual sources are too high for an effective
measurement. An ideal source is found not to
exist, the most suitable spectrum is that of the
Ra-y-Be photoneutron source, which however
has a very high gamma background. Other
sources oOf possible use are the Po-Li source
and the spontaneous fission sources.

It is apparent from the results of the multi-
group calculations that, at a fixed moisture, the
difference between the flux distributions corre-
sponding to different dry densities is at the epi~
thermal energy greater than at thermal ener-
gies. Therefore it is impossible to avoid the
effect of the density by using epithermal detec-
tors. The thermal flux & as a function of dis-
tance from the source is plotted in fig. 3. Fig. 4
shows the dependence of the thermal flux in the
origo on the moisture at different dry densities
of the material. In practice such curves that
serve as calibration curves of the instrument
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Fig. 4. Calibration curves at different densities.

are to be measured with samples of known com-
position and moisture. The strong dependence on
dry density of the calibration curves has been
observed experimentally by Unger and Claus [8].
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The investigations concerning the influence of
boron present in the material can be performed
with the previous Monte Carlo results, because
small amounts of this absorber change only the
thermal cross sections remarkably. A multi-
group calculation for the dry density of 2.0 g/cm3
was carried out, and the influence of the addi-
tional absorber on the epithermal flux was found
small as compared with the change in the ther-
mal flux (fig. 5). For a moisture of 20% the rel-
ative changes per boron content in the thermal
and epithermal fluxes in the origo were found to
be 17.5%/0.005% and 0.5%/0.005%, respectively.
Thus the effects of such additional absorbers as
boron, cadmium etc. can be almost completely
eliminated by the use of epithermal detectors
like cadmium-covered BFg-counters or cad-
mium-covered indium foils. )

The numerical method of calculation rap-
ported is applicable as well to other geometries,
for instance to the reflection and transmission
measurements on finite or semi-infinite slabs.
It can also be modified so that computations for
nonuniform distributions of moisture become
possible. J
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Fig. 5. Influence of boron on thermal flixes.

3. MEASUREMENTS WITH AN IRON REFLEC-
TOR AT THE BACK OF THE SOURCE

A series of measurements has been carried
out to investigate the influence on the calibration
curves of an additional iron reflector located
behind the source. The arrangement is shown in
fig. 6. The type of experiment was a surface
measurement by Pawlin and Spinks [3] on a test
material, which was fine sand of dry density
1.7 g/cmh. The neutron source used was a Po-Be
source of a strength of ~ 100 mC, and the detec-
tor was the BFg-counter Philips ZP 1010 whose
sensitivity is about 1 c¢/s per unit flux.

The resulting calibration curves obtained with
and without the reflector are plotted in fig. 7. It
is remarkable that the reflector does not raise
the reading of the detector for dry material, but
the sensitivity is considerably improved. This
improvement is due to the, reflection of inelas-
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Fig. 7. Influence of reflector.
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tically scattered neutrons from the iron, where-
as the direction of motion of elastically scat-
tered neutrons is mostly opposite. In the inelas-
tic scattering the energy of the source neutrons
decreases properly to the energies below 1 MeV
so that they provide in the moisture measure-
ment a better neutron source than the original
source neutrons.

4. SOME MATHEMATICAL QUESTIONS OF THE
ANALYSIS OF REFLECTION AND TRANS-
MISSION MEASUREMENTS ON SLABS

4.1. The problem setting

The aim of this section is to give a view on
some basic ideas of the mathematical analysis of
the reflection and transmission processes. The
physical model subject to most of our considera-
tions is diffusion theory for thermal neutrons
and single-collision theory ("ray-theory") for
fast neutrons. The ratio of the source term of
thermal neutrons to the fast flux is assumed to
be given by an effective cross section. This
model is, of course, not totally justified in the
analysis of the present problems, at least not
when the moisture contert is low, but it is suffi-
cient to give an insight into the main directions
of a more complete analysis.

Fig. 8. The slab geometry.

We consider in a cylindrical system of coor-
dinates a slab (fig. 8) extending from x=0to
x =2z, and to infinity in the radial direction.
Suppose that a point source which emits isotrop-
ically @ fast neutrons (energy E,) per second is
located in the point x =a, 7 = 0. We include all
the possibilities a> z, a=2z or a< z. The slab
is allowed to be stratified in the x direction in
the sense that the content of hydrogen atoms per
unit volume N =N(x) is an arbitrary well-behaved
function. Other atoms whose scattering and ab-
sorbing properties are accounted for are as-

sumed to be space-independently distributed in
the slab.

In general, the result of every measurement
in the stationary case is a linear functional of
the space, energy and direction dependent scalar
flux ¢(r, E,S$2), which is the solution of the ener-
gy dependeni Boltzmann equation [9] under ap-
propriate boundary and source conditions. Spe-
cifically, if the effects subject to our observa-
tions are the reflection from the face x =z and
the transmission through the face x = 0 of neu-
trons with different energies and directions of
motion, the functional is of the form

Eo
1=/ qaEf

Egh n-2>0

n-24e

[ Fs,E2) o, ERds, (1

x=0

a4
where the position vector r is denoted by s when
lying on one of the surfaces and ds is the surface
element. The vector m is the normal pointing
outwards from the face under question. The
function f = f(s, E,$) is an effectiveness function
determined by the detector used. For instance,
if we could select the neutrons from the infini-
tesimal energy interval (E',E'+dE) which are
reflected from the surface element ds around s'
into the infinitesimal solid angle d around the
direction £', the effectiveness would be the delta
function f = &(s, s')8(E -E')6(R2,2'). For other
types of functionals associated with this problem
of measurement, see ref. [10].

Following observations may be directly made
concerning the evaluation of the functional in eq.
(1), independently of the physical model used. If
the solution of the linear Boltzmann equation or
its approximation for the whole volume of the
slab, ¢(r,E,®), is found, then (1) is easily ob-
tained by substituting specifically r=s. There
exists, however, an alternative basing on the
fact that the whole solution ¢(r, E, 2) is actually
not needed. The surface function is directly
found in the method of invariant imbedding [9], in
which the particular slab of thickness z is looked
at as an element in the class of slabs of different
thicknesses z = 0. In this technique, which is
very useful in the description of stratified me-
dia, nonlinear initial value equations of Riccati
type result for the reflection and transmission
functions defined below in a special model. Fur-
thermore, from the point of view of numerical
computations the advantage of the reduction to
initial value problems of boundary value prob-

A A A R e
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lems wholly compensates the resulting non-
linearity.

The boundary function ¢(s,E,8) paturally
depends on the coefficients of the Boltzmann
equation or, in the other formulation, of the
equations of invariant imbedding. Because we
keep the other functions as well as the boundary
and source conditions fixed but think of different
hydrogen densities N(x) this function must be

added to the factors determining ¢, or @ ="

¢(s,E,$; N(x)). Let T denote the generally non-
linear operator that carries N(x) intc the func-
tion ¢ = ¢(s,E,f) defined in the proper phase
space. If the functional of eq. (1) is written in the
usual scalar product notation I={f,¢] and we
wish to determine the change {variation) 6 of I
due to a little change 6N(x) of N{x), we obtain for
¢ = T(N(x)): ‘

81=[f,6¢]=[ £, 6TIN()] =[/, T' N()ON(5)], (@)
where T'(N(x)) is the Fréchet derivative

T(N(x) + SN(x))-T(N(x)) )

T'(Nx)= lim N &)

{6N(x) |0

Note that the two first forms in eq. (2) are exact
because of the linearity of 7 as a functional of ¢,
whereas for the last expression the requirement
|8N(x)| « [ N(x)| must be fulfilled. Eq. (2) has
very important applications, arising from the
fact that in general the derivative T'(N(x)) is
more easily formed than T itself. A usual prin-
ciple of perturbation theory consists of the fol-
lowing. Suppose that the neutron balance egua-
tions cannot be analytically sclved for ¢ witha
particular N(x). It is, however, often possible to
find a comparison function Ny(x) that yields an
analytical solution and from which N{x) deviates
only slightly. (The simplest case is that N(x)
deviates little from a constant.) Then, by using
eq. (2) the functional [ = I, + 67 pertinent to N(x)
can be evaluated. Another application is that N
may depend on a real parameter, time, but let
the variation be so slow that the stationary neu-
tron equations can be used. This is the case for
drying of a concrete slab, For N = N(x;f), dN =
{(0N{x; H/36)dt we obtain

Thus, by making observations on dI/df an exper=
imental relation between T'(N(x)) and IN/3¢ is
established. This may be used in either direc-
tions depending on whether scattering of neu-
trons or drying of concrete is concerned. If is
most interesting to note how the partial deriva-

tive in eq. (4) can be further transformed by
using the diffusion equation for the moisture [11]
itself.

4.2. Use of linear equations in the diffusion ap-
proximation ’

It is assumed that in the description of the
neutron balance for the slab of fig. 8 the com-
plete Boltzmann equation mentioned in our intro-
ductory chapter may be replaced by the diffusion
equation

Ld = -V D(x)Ve(x,7) +Z5(0)&(x,") =q{x,7),  (5)

where the thermal flux & =®(x,7) is obtained
from the scalar flux ¢{r, E,) by an integration
over all directions of motion £ and over the
lowest, thermal part of the energy spectrum.
Thus ¢ depends only on the space coordinates x
and 7, if cylindrical symmetry is further as-
sumed. The diffusion coefficient D(x) is given by
one third of the inverse transport cross section

1

D(x) = 3zt(x) ’

where
Zt(x) = Zyg + Nlx)oy

and Zpg, 0f are given constants.  Likewise,
Ta(¥) = Za0 + N(x)oa, where Zy0 and oy are
given. The source term for thermal neutrons
q(x,7) is, as given by the ray theory of fast neu-~
trons combined with the concept of removal
cross section {see fig. 8):

) o %
e " 4n[(x-a)2+92]
-a)l X
e - S |, ®

min{z, a)

where the removal cross-section Zp(x) is given
by Zp(x) = Zpg + N{x)oy, and the constants Iyg
and op are supposed to be known. By min{z,a)
we denote the smaller one of the quantities. The
result (6) is formally one from the single-colli-
sion transport theory, but with respect to the
production of thermal neutrons it is a highly
artificial model that must be fitted to the experi-
ments. It should be noted, however, as was
mentioned in section 1, that in fast transmission
measurements the transmitted fast intensity at
distance 7 from the symmetry axis is in this
approximation given by a geometrical factor
times exp{- j: N(x)dx) which yields the integrated
moisture directly. If the source is moved along
the axis of symmetry within the slab (lower limit
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of the integral variable), there are possibilities
for detailed determination of N(x). In what fol-
lows only the thermal reflection experiment will
be considered. .

In the reflection experiment we assume that
the functional of eq. (1) which gives the result of
a single measurement depends only on the ther-
mal flux (use of diffusion theory already implies
independence on the direction of motion of neu-
trons) and is given by

=] ftr) Joyile,v) 207 dr
0

= [ 1) [L0(z,7) - AD@)oy(z, )] 2rr ar , . (1)
0 :

where f(r) is the effectiveness "function™ (also
distributions allowed). The expression for the
outgoing current J,,t is one from the diffusion
approximation. The functional of eq. (7) can be
expressed by the uge of the Parseval theorem
for Hankel transforms also ag follows:

[=21 [ W) Jole,b)ah,  (8)
0

where f{k) and Jyy4(2, k) Aenote the Hankel trans-
forms L

fy = [ 3o fr) v ar
0
. )
jout(z»h) =f Jolb?) Joutlz,r) r dr
0

(o¥) is the Bessel function of first kind and
zero order). Eq. (8) gives a linear functional in
the space of transformed functions. Two special
cases resulting from the choice fy(*) =1 or
folry = o(r- Yo)/ 75 respectively, yield Iy =
2nJout(2,0) and Iy = 21 [§do(rohMout(z hikdh. To
evaluate of eq. (8) we must solve eq. (5) under
the boundary conditions of diffusion theory

Jjn(oy'r) = %q)(oﬂ'r) - %D(O)d’xm, r.) =0 ]
Jin(z,7) = 19(z,7) + 1D(2)dy(z,7) = 0,

which state zero ingoing thermal current from
both faces. The next step consists of the reduc-
tion of eq. (5) with the boundary conditions (10) to
a one-dimensional problem via the Hankel trans-
form. The result is

d dd(x, h)

B =g

10}

+ (Za()+ D) (x, k) = Jx, h)

11

with the associated transformed forms of €qs.
{10). The Hankel transforms included in the pre-
vious equation have been defined analogously to
eq. {9). We do not perform the transformation of
¢ but assume that it is possible at least approxi-
mately. The solution of eq. (11) that satisfies the
boundary conditions can be expressed in a stan-
dard manner
z s
&(x,h) = [ Gylx,x") §(x', b) dn (12)
0

by using the Green's function Gp(x, &') that satis-
fies

dGy(x, x')
-%D(x) —hdr- + (Za(0) + D2) Gy (x, #')

=b(x-#'), (13a)
1 1y L dGh "o '
th(O,x)~zD(0)—d~x-(0,x )=0 forallx', (13b)

Gy,
‘TGh(z,x‘)+%D(z)Tx—(z,x') =0 foralls' . (13c)

However, for our purposes we do not need
Gy(x,%') for all values of x. The reason for thig
is that the transformed outgoing (reflected) cur-
rent Jyut(2, A) in the integral (8) is obtained as

Jout(z,B) = $8(z,h) - $D(2)8 4z, h)
4 .
=3[ Gplax) f, mae (14
0

on the strength of eq. (i2) and the transformed
eqs. (10). Consequently the Green's function is
actually needed only for x = 2. Because the dif-
ferential operator acting on & in eq. (11) is self-
adjoint in the manifold defined by the trans-
formed egs. (10) the Green's function is sym-
metric in its arguments i.e. Gplz, ") = Gylx', 2).
We must accordingly solve eq. (13) in the special
case x' = z and in the solution substitute x' for x.
This problem proves to be identical with the
solution of the following homogeneous equation
with boundary conditions inhomogeneous at one
end of the interval:

dGy(x,2)
...g.Dx) ™
dx drx

+ (Z4(0)+ B)Gy(x,2) = 0,
L i dGp
QGh(Orz) - -Z_D(O) W (0’ Z) =0 ] (15)

{ 1 dGh

1Gy(z,2) + ED(Z)E” (z-¢2)=1.
Actually the second parameter # can be dropped
out of the previous equations. For instance if the
diffusion constant and the absorption cross sec-
tion are space-independent the solution is easily
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obtained. From the definitions of the cross sec-
tions introduced in eq. (5) we get:

1o
352 M@,

t

0Z,(x) = 0,0N(x) ,  O8D(x) =

8Zp(x) = 0 8N(x)

as the small changes introduced in these func-
tions by the little change 8N(x). If the operator in
the first of egs. (15) is denoted by Loh and its
change due to SN(x) by ﬁLh

Loy = - % Do) r.Tx 5 an(x) 5 Do(x)h3 ¥
(186)
6Ly, = - - au(x) 35+ 0Tal¥) + w(x)h2

but we restrict ourselves to variations 3D(0) =
3D(z) = 0 in order to remain in the same mani-~
fold of solutions, it follows from the condition
{(Lon+3Lp)(Gn +06Gy) = 0 that Gy = -(Gp,3LnGy)
when using the ordinary scalar product notation.
If the variation 8§(x, %) is directly evaluated, we
finally obtain the variation 37 of eq. (8) as follows

e z
or=2n [ hf() & [ [8Gyx', 2)d(x', k)
0 0

+ Gplx', 2)8¢(x", )] dx* dk ,  {17)

where the expressions given above are to be
substituted. This is a special case of eq. (2).

4.3. Formulation of the problem via invariant
imbedding

In order to present new equations for the cal—
culation of the transformed Green's function
Gp(x;2) of eq. (15) (the parameter z is here of
special importance) we introduce the notations
x; 2

up(x; 2) = 1Gp(x; 2) - $D(x) Ehé;il

(right-going transformed current)
dAGpr({x; 2
o (%5 2) = 1Gy(x;2) + 5D(x) —-%g;’—)
‘(feft -going transformed current)

80 that the boundary conditions become uy(0;2) =
0, v{(z; 2) = 1. The reduction of the first of egs.
(15) to a first-order system

dugy, (%; z)
u’:]x - (G5 + 420 + $D(M2) wy(x; 2)

" (4‘1) - 32, - $D()H2) vy(x;2) ,  (18a)

dv {x; 2}
b < (g - 4%a - $D02) up(x; 2)

(G + 420 + 3DWA2) oy(xs2)  (18)

subjected to the above conditions is quite clas-
sical and provides no difficulties. Of importance
in the following are the coefficient functions
which are here denoted by :

an(®) = - (gpz5 + $Za@) + 1DGNZ) .

o =~ (g - $Zat) - $D(2)

They enter into the following Riccati equations
for the reflection function ry(z) =uy(z; z)/vh(z g)=
up(2;2) and the transmission function #,(2) =
v1(0; 2)/vp(2; 2) = vp(0; 2) as functions of the slab
thickness z:

m(2) = by(2) + 2ap(2)my(2) + bp(2)ri(2)
; "n(® =9 (20)
b (2) = ap(2)n(2) + byl (22} ,
$(0) =1.

As concerns the derivation of these formulae we
must refer to the literature {9]. Use is made of
the so-called Hadamard variational formula
which gives the dependence of Green's functions
on variations of the boundary (here thickness z).
For the case of a moisture distribution sym-
metrical with respect to x = 1z {whence reflec-
tion functions are independent of direction) it can
be shown [9] that our Green's function is ex-
pressed in terms of the solutions of eqs. (20) as

th(*} 1+ {2 - %))
G‘h( 1 2) = W (21)

In the case of a semi-infinite slab all formulae
are considerably simplified. With the aid of the
egs. (20) the following formulae may be obtained
for the variations 67,(z) and Bth(z) of the reflec-
tion and transmission functions, caused by the
variations 6ap(z) and 6by(z) which again are due
to the variation 8N{2):

v 57,(2) = Bby(2) + 28ay(2)ry(2) + 8By ()rE(2)
+ [2ay(2) + 2By (2)ny,(2)] By (=) .
bty (2) = bay(2)4,(2) + &by, (2)7y, (2)ty, () (22)
+ [ay(2) + by (2)1y,(2)] B¢ 2)
+ b (@)67y(2)

when small terms of the second order have been
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dropped. These are linear equations for the
variations sought and are more easily solvable
than the complete eq. (20). Hence we can connect
the variation of the hydrogen density N{x) to the
variations of the reflection and transmission
functions, further to the variation of the Green's
function (21), and finally to the variation 6I of the
functional (8). The generalization of the method
of invariant imbedding to various formulations of
the neutron transport theory is straight-forward.

4.4, Remarks and conclusions ;

One reason for the application of the physi-
cally unsatisfactory diffusion theory in this con-
text was that the underlying methods, specifical-
ly that of invariant imbedding, prove certainly
useful in the mathematical description of the dif-
fusion of the moisture itself, in heat conduction
etc. Many problems of space, time or concen-
tration dependent diffusion coefficients etc. in-
cluded in the reference [11] by Crank or [12, ap-
pendix 7} by Pihlajavaara may fmd their solu-
tions by this method.

Very illustrative curves and tables whlch for
various cases give the distribution of energy and
direction of motion for neuirons reflected from
a semi-infinite water medium, are found in our
last reference [13].
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