

MODELLING, CALIBRATION AND ERRORS OF γ - AND n-GAUGES

Servo S. H. KASI

Gauges

γ - and n-gauges are almost totally independent of temperature and chemical bindings of the elements of matter.

neutron transport

EQUATIONS

$$\text{for n-importance } \phi^*(r, \Omega, E)$$

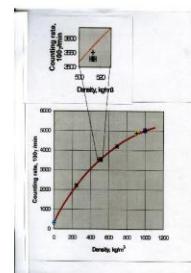
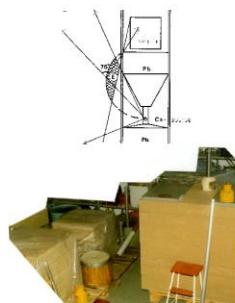
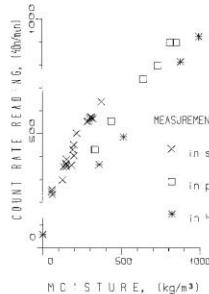
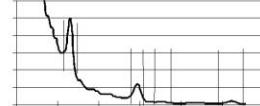
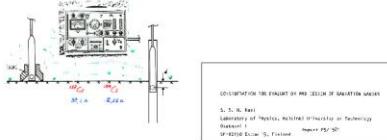
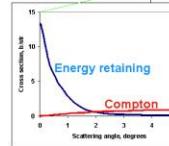
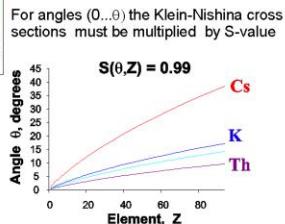
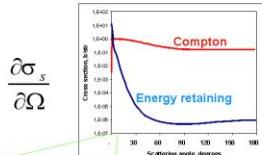
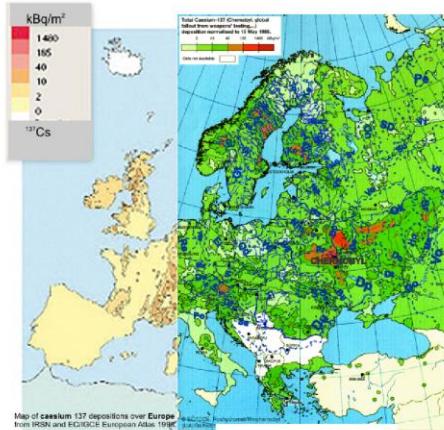
$$-\nabla \cdot \nabla \phi^* + \Sigma^* - \int \int \Sigma_n(C, E \rightarrow C', E') \phi^*(r, C, E) dC dE = \Sigma_d(r, \Omega, E)$$

$$\text{for n-flux } \phi(r, \Omega, E)$$

$$\nabla \cdot \nabla \phi + \Sigma_p - \int \int \Sigma_n(C, E \rightarrow C', E') \phi(r, C, E) dC dE = \Sigma_d(r, \Omega, E)$$

Modelling

Monte Carlo use










With MC can be performed very accurate calculations. More operational calibration models can be tested with it.

In γ -transport calculations, then the polarisation of photons must be considered.

In the (n, γ) gauge of chemical analysis the counting rate of source energy photons

This photon mostly comes as a ray from the point of neutron reaction or fast neutron scattering.

TODAY

