

EXPONENTIALLY DECAYING NUMBER ALWAYS OBEYS A BINOMIAL DISTRIBUTION

S. Kasi

Kajavankatu 6 B 45, FIN-04230 Kerava, Finland

email: servo.kasi@kolumbus.fi

Let N be a number decaying as

$$n = N(1 - \exp(-\lambda T)) \quad (1)$$

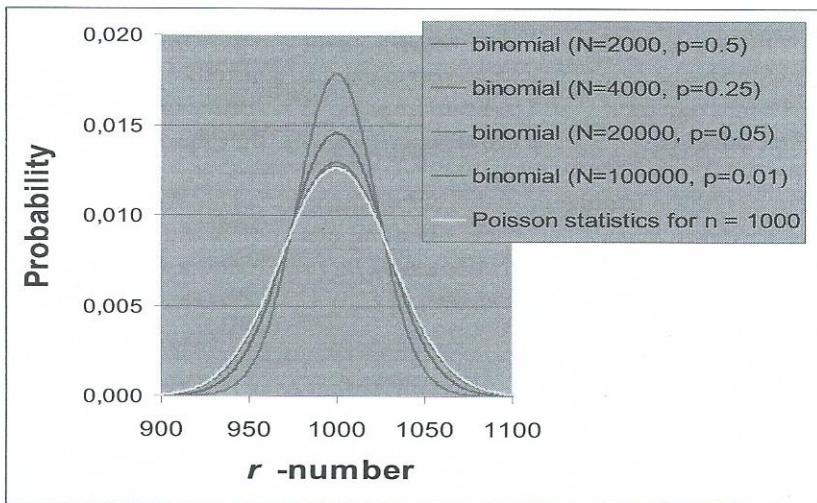
during the time period T . The number n has been decayed (failed, disintegrated, etc.), and $N-n$ is left. $\lambda = \ln(2)/T_{1/2}$. $T_{1/2}$ is the half-life of the decay. (1) is generally valid for the radioactive nuclides. That n has the binomial distribution is in [1] shown thoroughly.

$$p = (1 - \exp(-\lambda T)) \quad (2)$$

has been set for the probability of disintegration of a single nuclide. We have the standard deviation

$$\Delta n = \sigma(r) = \sqrt{n} \exp(-\lambda T / 2) \quad (3)$$

for the stochastic variable r of n . Δn is small when T is very small, and also when T is very large, that is, when $n = N$. If $T \ll T_{1/2}$ you can use the Poisson statistics. The binomial distribution can be calculated as fast as that of Poisson statistics (below, also [2]).



Above the estimate $E(r) = n$. However, N is seldom known exactly. The problem is Bayesian. n can often be determined (measured). When $T \ll T_{1/2}$ then $E(r) = n + 1$ [3]. The situation must be another (maybe contrary) when n is close to N .

[1] S.S.H. Kasi, Error of number of radioactive disintegrations is to be published.

[2] S.S.H. Kasi, Stochastics of radioactive decay is to be published. It has a poster.

[3] Rainwater, L.J., Wu, C.S., 1947, Application of probability theory to nuclear particle detection. Nucleonics 1, October, 60-69.