
Journal of Physical Science and Application 4 (3) (2014) 193-197 
 

 

Error of Number of Radioactive Disintegrations 

Servo Kasi 
Aalto University, Esbo 02150, Finland 

 
Received: May 12, 2013 / Accepted: June 17, 2013 / Published: March 15, 2014. 
 
Abstract: Statistics of exponentially decaying radiation of any nuclide always obeys the binomial stochastic distribution. The variance 
is derived for the number of atoms disintegrating in a time interval. The variance determines the error of the disintegrations number. 
When the measuring time is short compared with the half life, then the Poisson stochastics is valid. Today, computers can be used to 
determine either distribution very easily. The dependence of absolute and relative error on the measuring time interval is examined, but 
here assuming the absence of the background contribution. 
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1. Introduction  

We see that the probability of radioactive 
disintegration is always described by the binomial 
distribution law [1-3]. The law is derived also here, as 
well as the absolute and relative errors of the count 
number it causes. The law is significant for relatively 
fast disintegrations. Then the error calculated using 
Poisson distribution can be considerably too large. 
Today the computers calculate also the binomial 
distributions rapidly. 

We are assuming that N is the number atoms of a 
certain radioactive nuclide at time t = 0. On the 
disintegration of these nuclides there is the 
experimental result that the relative diminishing of the 
number is determined by the law: 

λ−=dt
N

dN
             

(1) 

where, λ is the disintegration constant. Then, during a 
time interval T the number of the disintegrated nuclides 
is 

)1( TeNn λ−−=             (2) 
The number n, or some quantity proportional to it, 
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can be measured. We have [4] Nn
T

=
∞→

lim , Eq. (2).  

2. Some Basic Theorems of Stochastic 
Functions 

All the theorems we need for the stochastic variables 
u, v, .. have been presened by  Blanc-Lapierre and 
Fortet [5]: 

Theorem 1. The expectation of the sum of stochastic 
variables u, v, ..:E(u + v + ..) = E(u) + E(v) + .., is the 
sum of the expectations of the variables. 

Theorem 2. The variance of the sum of the independent 
random variables is the sum of the variances of the 
variables: Var(u + v +…) = Var(u) + Var(v) +... 

Later we take the third theorem from Ref. [5]. 

3. Statistics of n 

We thus have the group of N identical nuclides, at 
the time moment zero. We assume that the 
disintegrations of nuclides are independent from each 
others.  

For a single nuclide we set the stochastic variable ν 
to present its disintegration during the time interval T. ν 
= 0, when the nuclide is not disintegrated, and ν = 1, 
when the disintegration occurs. 

We set the probability p for to disintegrate (i.e.     
it “fails”) and the probability q for not to disintegrate.  
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Fig. 1  Decay of N radioactive nuclides. n is the number of 
disintegration events. t½ = log (2) λ-1. 
 

 
Fig. 2  ν is a two-valued (0 or 1) discrete variable. q and p 
are the probabilities of these values. 
 

Rainwater and Wu [1] have the same structure for this 
Bernoulli stochastics. p + q = 1. 

We take another integer stochastic variable r to 
present the number from the N nuclides to disintegrate 
during time T.  

∑
=

∈=
N

i
i Nrr

1
},...,0{,ν              (3) 

How many ways a certain number r of atoms comes 
to be disintegrated? N atoms can be the first to 
disintegrate. N − 1 is the number of atoms left, and 
each of them can be the atom to disintegrate as the 
second, N − 2 as the third, etc. N − r + 1 is the number of 
atoms that can disintegrate lastly. V = N(N − 1)(N − 
2)⋅⋅⋅(N − r + 1), variation, is the number for all possible 
ways of the r atom disintegrations from N atoms. The 
order of atom disintegrations is totally random. Take a 
group of the r disintegrated atoms. Each of these atoms  

can be in any position in V. Therefore, the r atoms can 
be ordered randomly in the number r!, permutation, 
ways. And the number V should be divided by r! and 
the result is the number  
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⎞
⎜⎜
⎝

⎛
,           (4) 

combination, the number of the ways, in which the r 
disintegrations can be occurred among the N     
atoms [6]. 

Because vi ∈ {0, 1} with the probabilities q or p, we 
have the probability  

rNrrNr pp
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qp
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⎛
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⎞
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⎝

⎛
= )1()( (5) 

of the r disintegrations. r = v when N = 1. We see that 
the probability of radioactive disintegration is 
described by the binomial distribution law [1-3].  

For a radioactive nuclide we postulate the 
probabilities p = 1 − e−λT and q = e−λT, for the 
disintegration during the time T. In some references 
you can find the derivation of q = exp(−λT), but it 
implies the assumptions of the Poisson stochastics 
(demands λT << 1).  

The mean value of disintegration of one nuclide 
(during T) is the expectation:  

E(v) = ν  = q0 + p1 = p = 1 − e−λT          (6) 
and the variance of its disintegration is  

Var(v) = D2(v) = σ2(v) = E(v − ν ) 
 = (0 − p)2q + (1 − p)2p         (7) 

This holds for every single nuclide of the N atoms. 
Because (Theorem 1) the expectation of the sum of 
stochastic variables u, v, ..: E(u + v + ..) = E(u) + E(v) 
+ .., is the sum of the expectations of the variables, for 
the stochastic variable r we have: 

E(r) = E(∑
=

N

i
i

1
ν ) = ∑

=

N

i
iE

1
)(ν = Np = N )1( Te λ−− = n. (8) 

This expectation agrees with Eq. (2).  
The expectation can be shown also explicitly: 

E(r) = pp
r
N
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Because the disintegration events are independent, 
the variance of r (Theorem 2) is 

2 2 2( ) ( ) ( ) ( )
           T

Var r r N N
N pq ne λ

σ σ ν σ ν
−

= = =

= =
  (10) 

Rainwater and Wu[1] present the explicit derivation. 
The mean statistical error [1-3] 

2/)( Tenrn λσ −==Δ            (11) 
You see, this value is smaller than the error value 

n in the case 0≅Tλ . 

Also the relative error 

n
e

n
n T 2/λ−

=
Δ

          
(12) 

has the same exponential function multiplier, that is 
smaller than 1. The relative error Eq. (12) is in practice 
very important, but in the measurements the 
background is to be concerned.   

4. Binomial and Poisson Statistics 

When 0≅Tλ , then Tep λ−−= 1  is very small, 
i.e. Tλ . The limit of P(r) has been sought under this 
assumption and holding   

pN = n TNλ≅               (13) 

is constant. When p decreases, N must increase. The 
limit: 

( 1) ( 1)0 ( )  (1 )
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is the Poisson distribution. The limit is approached 
uniformly for all r as presented by Feller [7]. Also now 
E(r) = n, but Var(r) = n. The Poisson distribution has 
been much used for approximations of P(r).  

Today, the programs of computing give as easily the 
stochastic distributions, binomial and Poisson (Fig. 3), 
but the binomial one is always valid. Gol’danskii    
et al. [2], illustrate the binomial distributions n = 5 for 
N = 6, 10, 20, and ∞ , the Poisson distribution.  

5. Background Often from Poisson 
Distributed Nuclides   

We can suppose that the nuclide distributions are 
independent. The background nb can often only consist 
of radiation of the nuclides for which the Poisson 
statics is valid. From Ref. [5] we find:  

Theorem 3. The stochastic function of the sum of the 
independent random variables, which have the Poisson 
stochastic functions, is a Poisson stochastic function. 

1,2,…,k are such nuclides and ni presents the count 
number of the nuclide i. Then the background 

∑=
k

1
ib nn is Poisson distributed, too. 

6. Error Considerations 

Suppose a 4π detector, which can detect all 
disintegrations that occur for the N nuclides. The number 
 

 
Fig. 3  Binomial and Poisson statistics. Distributions for n = 
100.  
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N can be known or estimated. We shall determine T in 
2 cases of demands for error, starting from Eq. (11).  

1. Δn = ε 
Then: 

2/2
1

2/ ))1(( TTT eeNen λλλε −−− −==   
(15) 

Of the two solutions for T from Eq. (15) we consider 
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(16) 

For the error ε = ± 1, or the case when the last 
disintegration starts to be probable, we find values in 
Table 1 (The other solution of Eq. (16), when 

N2411( ε−− ) in the argument of the natural 
logarithmic function, is in the third column). 

T of Eq. (2), for n = N – 1, and from Eq. (16) for large 
N have the same values as in Table 1, but for small N, 
they differ, e.g., for N = 100 the T/t½= 6.629 from   
Eq. (16), but from Eq. (2) n = N – 1 = 99 when T/t½ = 
log(N)/log(2) = 6.644. 

2. β=
Δ
n
n

 

For practice this error is very useful. It is: 

2
1

2
1

2/ )1()(/
−−− −== TT eNne λλβ     (17) 

This errordecreases monotonously for all the time 
andis zero when time isinfinite. Further: 

)11(log 2 N
T

β
λ +=

          
(18) 

The larger N, the smaller Eq. (18) and T are. If N = 
104 and β = 1%, then λT = log2, or ½tT = . 

The number of counts, in practical measurements, 
is proportional to n, but is often much smaller. We 
have not considered the effects of the background,  
and the dead time that influence in big counting rates. 
The significant background causes, that the optimal 
measuring time is also determined by the portion of 
background and how background alters with    
time. 

 
Fig. 4  Presentation of the error ε of Eq. (15), and also the 
curve of n(T) from Eq. (2). 

 

Table 1  Measuring times T for error ε = ± 1. 

N T/t1/2 
104 13.3 1.44 10-4 

106 19.9 1.44 10-6 

 

7. Bayesian Approach 

Often the number N is not known. The result of 
measurement of n(T) is a certain value of r. The 
Bayesian approach of our stochastic problem is: what a 
single result ntells of its mean value? For the case

½tT << Rainwater and Wu [1] wrote Eq. (14) (n 
instead of r) as a stochastic function: 

P(u) =  = )exp(
!

u
n
u n

−              (19) 

for the mean value u. E(u) = n + 1 is then the best 
estimate for the mean value of n [1-3, 8]. 

Stevenson [8] has derived the solutions for the 
general binomial distribution, where ½TT ≈ . Though 
he assumed for nN ≥  roughly that each N has the 
same probability, he found the good results: 

E(r) = n + 1 – p 
where in the Poisson case 0≅p . When 1=p , the 
result agrees with Eq. (8). When approaching this limit 
then in the Fig. 1, T is much larger than t½. 

Var(r) = (1 −p)(n + 1)       (20) 
When 1→p , i.e., ∞→T , then Var(r) 0→  

means that n approaches the exact value N, i.e. without 
the error. However, Eq. (11) is for T >> t1/2 the more 
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relevant presentation of error than the square root of  
Eq. (20). 

8. Discussion 

The probability p is above “postulated” as a very 
generally assumed presentation. Can it have another 
presentation? Rainwater and Wu [1] needed no 
presentation for p and, however, obtained the very 
general results. 

Often the number of radioactive nuclides N is 
unknown. Today in certain cases it may be measured. I 
think the mass pectrometers should be very applicable 
for this. Then for certain N and T we can determine the 
stochastic distribution of n(T) experimentally. 

9. Conclusions 

We have considered the exponential attenuation of 
radioactive substance. We have assumed that all the 
disintegrations of its nuclides are measured. The 
binominal distributions of the number of the 
disintegrations are illustrated in Fig. 3 (for the mean 
value n = 100). You see that the distribution is more 
narrow when the disintegration probability p is larger 
(When p = 0.5, then the measuring time T = t½). When 
p (and T) increases then the variance of the distribution 
and the error of n approach the value zero. 

The error of the number in counts is the largest when 
the time of measurement T is equal to the half life t½ 
(Fig. 4). For all the time the relative errorΔn/n is 
diminishing with increasing time.The error obeys the 

Poisson statistics only when T << t1/2. The binomial 
statistics the error obeys always. Today the computers 
calculate the binomialerror easily.  

We have shown that E(r) ∈ [n, n+1]. When N is 
unknown and T << t1/2, then the mean E(r) ≅ n + 1 and 
the error is      1n + . Otherwise the mean E(r) = nand the 
error is e x p(  /2)n Tλ− , Eq. (11) (Eq. (20) can be 
incorrect). When T >> t1/2, then the error gradually 
approaches the value zero. 
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