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Error of Number of Radioactive Disintegrations
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Abstract: Statistics of exponentially decaying radiation of any nuclide always obeys the binomial stochastic distribution. The variance

is derived for the number of atoms disintegrating in a time interval. The variance determines the error of the disintegrations number.

When the measuring time is short compared with the half life, then the Poisson stochastics is valid. Today, computers can be used to

determine either distribution very easily. The dependence of absolute and relative error on the measuring time interval is examined, but

here assuming the absence of the background contribution.
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1. Introduction

We see that
disintegration is always described by the binomial

the probability of radioactive

distribution law [1-3]. The law is derived also here, as
well as the absolute and relative errors of the count
number it causes. The law is significant for relatively
fast disintegrations. Then the error calculated using
Poisson distribution can be considerably too large.
Today the computers calculate also the binomial
distributions rapidly.

We are assuming that N is the number atoms of a
certain radioactive nuclide at time t = 0. On the
there is the
experimental result that the relative diminishing of the

disintegration of these nuclides

number is determined by the law:
dN /
—— Jdt=-1 1
N (1)

where, A is the disintegration constant. Then, during a
time interval T the number of the disintegrated nuclides
is

n=N(l-e*") )

The number n, or some quantity proportional to it,
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can be measured. We have [4] %im n=N,Eq. (2).
—o

2. Some Basic Theorems of Stochastic
Functions

All the theorems we need for the stochastic variables
u, v, .. have been presened by
Fortet [5]:

Theorem 1. The expectation of the sum of stochastic
variables U, v, ...E(u + v + .) = E(u) + E(v) + .., is the
sum of the expectations of the variables.

Blanc-Lapierre and

Theorem 2. The variance of the sum of the independent
random variables is the sum of the variances of the
variables: Var(u + v +...) = Var(u) + Var(v) +...

Later we take the third theorem from Ref. [5].

3. Statistics of n

We thus have the group of N identical nuclides, at
the time moment zero. We assume that the
disintegrations of nuclides are independent from each
others.

For a single nuclide we set the stochastic variable v
to present its disintegration during the time interval T. v
= 0, when the nuclide is not disintegrated, and v=1,
when the disintegration occurs.

We set the probability p for to disintegrate (i.e.

it “fails”) and the probability g for not to disintegrate.
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Fig. 1 Decay of N radioactive nuclides. n is the number of
disintegration events. t,,= log (2) A™.
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Fig. 2 vis atwo-valued (0 or 1) discrete variable. g and p
are the probabilities of these values.

Rainwater and Wu [1] have the same structure for this
Bernoulli stochastics. p+q=1.

We take another integer stochastic variable r to
present the number from the N nuclides to disintegrate
during time T.

N
r=>v, re{0,..,N} 3)
i=1

How many ways a certain number I of atoms comes
to be disintegrated? N atoms can be the first to
disintegrate. N — 1 is the number of atoms left, and
each of them can be the atom to disintegrate as the
second, N — 2 as the third, etc. N — r + 1 is the number of
atoms that can disintegrate lastly. V.= N(N — 1)(N —
2)--«(N — r + 1), variation, is the number for all possible
ways of the r atom disintegrations from N atoms. The
order of atom disintegrations is totally random. Take a

group of the r disintegrated atoms. Each of these atoms

can be in any position in V. Therefore, the r atoms can
be ordered randomly in the number r!, permutation,
ways. And the number V should be divided by r! and
the result is the number

N) V N!
()bt @
r rr (N-n'r!

combination, the number of the ways, in which the r
disintegrations can be occurred among the N
atoms [6].

Because v; € {0, 1} with the probabilities g or p, we

have the probability

N N-r N r N-r
P(r)=(rjprq =(r]p(l—p) (5)

of the r disintegrations. r =V when N = 1. We see that
the probability of radioactive disintegration is
described by the binomial distribution law [1-3].

For a radioactive nuclide we postulate the
probabilities p = 1 - e and q = ef’”, for the
disintegration during the time T. In some references
you can find the derivation of q = exp(—AT), but it
implies the assumptions of the Poisson stochastics
(demands AT << 1).

The mean value of disintegration of one nuclide
(during T) is the expectation:

Ev)= v =q0+pl=p=1-e* 6)
and the variance of its disintegration is
Var(v) = D*(v) = (V) =E(v — V)
=0 -pg+ 1 -pp (7

This holds for every single nuclide of the N atoms.
Because (Theorem 1) the expectation of the sum of
stochastic variables u, v, ... E(u + v + ..) = E(u) + E(v)
+ .., is the sum of the expectations of the variables, for

the stochastic variable r we have:

N N
E(n= E(Z"i) = > E(v;)>Np=N(1-e")=n.(8)
i=1

i=1
This expectation agrees with Eq. (2).
The expectation can be shown also explicitly:

N N N
E(n =) rP(r) =Zr( rjpr(l— P
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NN =1
NpZ( jps(l— Pt
sso\ S
=Np=n,Gs=r-1) 9)

NON
because Z( ) jpk(l— p)' " =1 for any N.

k=0

Because the disintegration events are independent,

the variance of r (Theorem 2) is
Var(r)=c’(r)=c’>(Nv)=Ng*(v) (10
=N pg=ne™

Rainwater and Wu[1] present the explicit derivation.
The mean statistical error [1-3]

An=o(r)=+ne " (11)

You see, this value is smaller than the error value

\/ﬁ in the case AT = 0.

Also the relative error
An e (12)
n Jn

has the same exponential function multiplier, that is

—AT /2

smaller than 1. The relative error Eq. (12) is in practice

very
background is to be concerned.

important, but in the measurements the

4. Binomial and Poisson Statistics

When AT =0, then p=1-€*" is very small,
i.e. AT . The limit of P(r) has been sought under this
assumption and holding

pN=n= ATN (13)

is constant. When p decreases, N must increase. The

limit:
lim lim
p—>0 P(r) = N-ow N(N‘l)""(N‘”l) pra-p"
pN =n pN =n r
lim NF(I_L)...(l_ir_l)
= N N N~ pra-)" W

r! N
pN =N

lim ) )
sl N)T e 0T (14)
r! N r!
pN =N

is the Poisson distribution. The limit is approached
uniformly for all r as presented by Feller [7]. Also now
E(r) = n, but Var(r) = n. The Poisson distribution has
been much used for approximations of P(r).

Today, the programs of computing give as easily the
stochastic distributions, binomial and Poisson (Fig. 3),
but the binomial one is always valid. Gol’danskii
et al. [2], illustrate the binomial distributions n =5 for
N =6, 10, 20, and oo, the Poisson distribution.

5. Background Often from Poisson

Distributed Nuclides

We can suppose that the nuclide distributions are
independent. The background n, can often only consist
of radiation of the nuclides for which the Poisson
statics is valid. From Ref. [5] we find:

Theorem 3. The stochastic function of the sum of the
independent random variables, which have the Poisson
stochastic functions, is a Poisson stochastic function.

1,2,...,k are such nuclides and n; presents the count

number of the nuclide i. Then the background

k
n, = Z n, is Poisson distributed, too.
1

6. Error Considerations

Suppose a 4m detector, which can detect all

disintegrations that occur for the N nuclides. The number

Binomial and Poisson statistics for n =100
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Fig. 3 Binomial and Poisson statistics. Distributions for n =
100.
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N can be known or estimated. We shall determine T in
2 cases of demands for error, starting from Eq. (11).
I.An=¢
Then:

1
&= neflT/Z :(N(l_eilT))EeilT/z (15)
Of the two solutions for T from Eq. (15) we consider
N
log (—— (1++/1-4£%/N))

2¢&? — (16)
0og

T=t

Va

For the error € = £ 1, or the case when the last
disintegration starts to be probable, we find values in
Table 1 (The other solution of Eq. (16), when

(1—«/1—452/N ) in the argument of the natural

logarithmic function, is in the third column).

T of Eq. (2), forn=N-1, and from Eq. (16) for large
N have the same values as in Table 1, but for small N,
they differ, e.g., for N = 100 the T/t,= 6.629 from
Eq. (16), but from Eq. 2)n=N-1=99 when T/, =
log(N)/log(2) = 6.644.

An
2. —=p
n
For practice this error is very useful. It is:
1 1
B=e2/n=(N) 2@ -1)2 (17

This errordecreases monotonously for all the time

andis zero when time isinfinite. Further:

1
AT —log(1+ﬂ2N) (18)

The larger N, the smaller Eq. (18) and T are. If N =
10* and #= 1%, then AT =log2,0r T =t,,.

The number of counts, in practical measurements,
is proportional to n, but is often much smaller. We
have not considered the effects of the background,
and the dead time that influence in big counting rates.
The significant background causes, that the optimal
measuring time is also determined by the portion of
background and how background alters with

time.
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Fig. 4 Presentation of the error ¢ of Eq. (15), and also the
curve of n(T) from Eq. (2).

Table1 Measuring times T for error e=+1.

N Ty,
10* 13.3 1.44 10*
108 19.9 1.44 10°°

7. Bayesian Approach

Often the number N is not known. The result of
measurement of N(T) is a certain value of r. The
Bayesian approach of our stochastic problem is: what a
single result ntells of its mean value? For the case
T <<'t,, Rainwater and Wu [1] wrote Eq. (14) (n

instead of r) as a stochastic function:
n

PU) = - %exp(—U) (19)

for the mean value u. E(u) = n + 1 is then the best
estimate for the mean value of n [1-3, 8].

Stevenson [8] has derived the solutions for the
general binomial distribution, where T ~T,, . Though
he assumed for N > n roughly that each N has the
same probability, he found the good results:

E(n=n+1-p
where in the Poisson case p= 0. When p=1, the
result agrees with Eq. (8). When approaching this limit
then in the Fig. 1, T is much larger than t,,.
Var(r) = (1 —p)(n + 1) (20)

When p—1, ie, T — oo, then Var(r)y —>0
means that n approaches the exact value N, i.e. without
the error. However, Eq. (11) is for T >> t;,, the more
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relevant presentation of error than the square root of
Eq. (20).

8. Discussion

The probability p is above “postulated” as a very
generally assumed presentation. Can it have another
presentation? Rainwater and Wu [1] needed no
presentation for p and, however, obtained the very
general results.

Often the number of radioactive nuclides N is
unknown. Today in certain cases it may be measured. I
think the mass pectrometers should be very applicable
for this. Then for certain N and T we can determine the

stochastic distribution of n(T) experimentally.
9. Conclusions

We have considered the exponential attenuation of
radioactive substance. We have assumed that all the
disintegrations of its nuclides are measured. The
of the
disintegrations are illustrated in Fig. 3 (for the mean

binominal distributions of the number
value n = 100). You see that the distribution is more
narrow when the disintegration probability p is larger
(When p = 0.5, then the measuring time T = t,;). When
p (and T) increases then the variance of the distribution
and the error of n approach the value zero.

The error of the number in counts is the largest when
the time of measurement T is equal to the half life t,,
(Fig. 4). For all the time the relative errorAn/n is
diminishing with increasing time.The error obeys the

Poisson statistics only when T << t;;,. The binomial
statistics the error obeys always. Today the computers
calculate the binomialerror easily.

We have shown that E(r) € [n, n+1]. When N is
unknown and T << t),, then the mean E(r) = n + 1 and
the error is\/n_+1. Otherwise the mean E(r) = nand the
error is x/F\eXp(—lT/2), Eq. (11) (Eq. (20) can be
incorrect). When T >> ty, then the error gradually

approaches the value zero.
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